Q1. [10 pts] All Searches Lead to the Same Destination

For all the questions below assume :

All search algorithms are graph search (as opposed to tree search).

cij > 0 is the cost to go from node ¢ to node j.

e There is only one goal node (as opposed to a set of goal nodes).

All ties are broken alphabetically.

e Assume heuristics are consistent.

Definition: Two search algorithms are defined to be equivalent if and only if they expand the same nodes in the
same order and return the same path.

In this question we study what happens if we run uniform cost search with action costs d;; that are potentially
different from the search problem’s actual action costs c¢;;. Concretely, we will study how this might, or might not,
result in running uniform cost search (with these new choices of action costs) being equivalent to another search
algorithm.

(a) [2 pts] Mark all choices for costs d;; that make running Uniform Cost Search algorithm with these costs d;;
equivalent to running Breadth-First Search.

O dij=0

o dij =a,a>0

O dij = a, a <0

® d;=1

O diyj=-1

(O None of the above

Beadth First search expands the node at the shallowest depth first. Assigning a constant positive weight to all
edges allows to weigh the nodes by their depth in the search tree.

(b) [2 pts] Mark all choices for costs d;; that make running Uniform Cost Search algorithm with these costs d;;
equivalent to running Depth-First Search.

O diy=0

O dj=a,a>0

® d,=c,a<0

O dij=1

® 4;,=-1

(O None of the above

Depth First search expands the nodes which were most recently added to the fringe first. Asssigning a constant
negative weight to all edges essentially allows to reduce the value of the most recently nodes by that constant,
making them the nodes with the minimum value in the fringe when using uniform cost search.

(c) [2 pts] Mark all choices for costs d;; that make running Uniform Cost Search algorithm with these costs d;;
equivalent to running Uniform Cost Search with the original costs c;;.

— 2
dij = Cij
dij = 1/ci;
dij =« Cj, a>0

dij:Cij‘i‘Oé, a>0
dij:acij-i-ﬁ, a>0, >0

None of the above

CRCRON NONO,

Uniform cost search expands the node with the lowest cost-so-far = Zij ci; on the fringe. Hence, the relative
ordering between two nodes is determined by the value of ZU cij for a given node. Amongst the above given
choices, only for d;; = o ¢;5, a > 0, can we conclude,

> di > Yo diyj = > > > ¢y, for some nodes n and m.
ij€ path(n) ij€ path(m) ij€ path(n) ij€ path(m)

(d) Let h(n) be the value of the heuristic function at node n.

(i) [2 pts] Mark all choices for costs d;; that make running Uniform Cost Search algorithm with these
costs d;; equivalent to running Greedy Search with the original costs ¢;; and heuristic function h.

dij = h(i) — h(j)

dij = h(j) — h(i)

di]‘ =« h(Z), a>0

dij = h(}), a>0

dij = cij + h(j) + h(3)

None of the above

OO000@O

Greedy search expands the node with the lowest heuristic function value h(n). If d;; = h(j) — h(i), then
the cost of a node n on the fringe when running uniform-cost search will be . d;; = h(n) — h(start). As
h(start) is a common constant subtracted from the cost of all nodes on the fringe, the relative ordering
of the nodes on the fringe is still determined by h(n), i.e. their heuristic values.

(ii) [2 pts] Mark all choices for costs d;; that make running Uniform Cost Search algorithm with these
costs d;; equivalent to running A* Search with the original costs ¢;; and heuristic function h.

dij=a h(i), a>0

ij = O h(])v a>0

ij = Cij + h(l)

i = cij + h(j)

i = cij + h(i) = h(j)

ij = iy + h(j) — h(i)

None of the above

o) JOXOI0X0)0)
QA SR

A* search expands the node with the lowest f(n)+h(n) value, where f(n) =7, ¢;; is the cost-so-far and
h is the heuristic value. If d;; = ¢;; + h(j) — h(7), then the cost of a node n on the fringe when running
uniform-cost search will be >, di; = 3. cij + h(n) — h(start) = f(n) + h(n) — h(start). As h(start) is
a common constant subtracted from the cost of all nodes on the fringe, the relative ordering of the nodes
on the fringe is still determined by f(n) + h(n).

Q2. [18 pts|] Dynamic A* Search

After running A* graph search and finding an optimal path from start to goal, the cost of one of the edges, X — Y,
in the graph changes. Rather than re-running the entire search, you want to find a more efficient way of finding the
optimal path for this new search problem.

You have access to the fringe, the closed set and the search tree as they were at the completion of the initial
search. In addition, you have a closed node map that maps a state, s from the closed set to a list of nodes in the
search tree ending in s which were not expanded because s was already in the closed set.

For example, after running A* search with the null heuristic on the following graph, the data structures would be as
follows:

Fringe: {} Closed Node Map: {A:[], B:[], C:[], D:[(A-C-D, 6)]}
Closed Set: {A, B, C, D} Search Tree: {A : [(A-B, 1), (A-C, 4)],
A-B [(A-B-D, 2)]
AC [,
A-B-D [(A-B-D-G, 7)),
A-B-D-E :[]}

For a general graph, for each of the following scenarios, select the choice that finds the correct optimal path and cost
while expanding the fewest nodes. Note that if you select the 4t choice, you must fill in the change, and if you select
the last choice, you must describe the set of nodes to add to the fringe.

In the answer choices below, if an option states some nodes will be added to the fringe, this also implies that the
final state of each node gets cleared out of the closed set (indeed, otherwise it’d be rather useless to add something
back into the fringe). You may assume that there are no ties in terms of path costs.

Following is a set of eight choices you should use to answer the questions on the following page.

i The optimal path does not change, and the cost remains the same.

ii. The optimal path does not change, but the cost increases by n

iii. ~ The optimal path does not change, but the cost decreases by n

iv. The optimal path does not change, but the cost changes by

V. The optimal path for the new search problem can be found by adding the subtree rooted at X that was
expanded in the original search back onto the fringe and re-starting the search.

vi. The optimal path for the new search problem can be found by adding the subtree rooted at Y that was
expanded in the original search back onto the fringe and re-starting the search.

vii. The optimal path for the new search problem can be found by adding all nodes for each state in the closed
node map back onto the fringe and re-starting the search.

viii. The optimal path for the new search problem can be found by adding some other set of nodes back onto
the fringe and re-starting the search. Describe the set below.

(a)

(b)

(c)

(d)

(e)

(f)

[3 pts] Cost of X — Y is increased by n,n > 0, the edge is on the optimal path, and was explored by the first
search.

O i O i O i O iv, Change:

O v O v O vii o viii, Describe the set below:

The combination of all the nodes from the closed node map for the final state of each node in the subtree rooted
at Y plus the node ending at Y that was expanded in the initial search. This means that you are re-exploring
every path that was originally closed off by a path that included the edge X — Y.

[3 pts] Cost of X — Y is decreased by n,n > 0, the edge is on the optimal path, and was explored by the first
search.

O i O i @ i O iv, Change:

O v O i O il (O viii, Describe the set below:

The original optimal path’s cost decreases by n because X — Y is on the original optimal path. The cost of
any other path in the graph will decrease by at most n (either n or 0 depending on whether or not it includes
X — Y). Because the optimal path was already cheaper than any other path, and decreased by at least as
much as any other path, it must still be cheaper than any other path.

[3 pts] Cost of X — Y is increased by n,n > 0, the edge is not on the optimal path, and was explored by the
first search.

[I O ii O iii (O iv, Change:

O v O i O vii (O viii, Describe the set below:

The cost of the original optimal path, which is lower than the cost of any other path, stays the same, while the
cost of any other path either stays the same or increases. Thus, the original optimal path is still optimal.

[3 pts] Cost of X — Y is decreased by n,n > 0, the edge is not on the optimal path, and was explored by the
first search.

O i O ii QO iii O iv, Change:

O v O i O il (O viii, Describe the set below:

The combination of the previous goal node and the node ending at X that was expanded in the initial search.

There are two possible paths in this case. The first is the original optimal path, which is considered by
adding the previous goal node back onto the fringe. The other option is the cheapest path that includes
X — Y, because that is the only cost that has changed. There is no guarantee that the node ending at Y, and
thus the subtree rooted at Y contains X — Y, so the subtree rooted at X must be added in order to find the
cheapest path through X — Y.

[3 pts] Cost of X — Y is increased by n,n > 0, the edge is not on the optimal path, and was not explored by
the first search.

® O ii O il O iv, Change:

O v O i O i (O viii, Describe the set below:

This is the same as part (c).

[3 pts] Cost of X — Y is decreased by n,n > 0, the edge is not on the optimal path, and was not explored by
the first search.

o O i O i (O iv, Change:

O v O i O vii (O viii, Describe the set below:

Assuming that the cost of X — Y remains positive, because the edge was never explored, the cost of the path
to X is already higher than the cost of the optimal path. Thus, the cost of the path to Y through X can only
be higher, so the optimal path remains the same.

If you allow edge weights to be negative, it is necessary to find the optimal path to Y through X sepa-
rately. Because the edge was not explored, a node ending at X was never expanded, so the negative edge would
still never be seen unless the path was found separately and added onto the fringe. In this case, adding this
path and the original goal path, similar to (d), would find the optimal path with the updated edge cost.

Q3. [16 pts| CSPs

(a) The graph below is a constraint graph for a CSP that has only binary constraints. Initially, no variables have
been assigned.

(b)

For each of the following scenarios, mark all variables for which the specified filtering might result in their
domain being changed.

(i)

(ii)

[1 pt] A value is assigned to A. Which domains might be changed as a result of running forward checking
for A?

O A ® B ® C ® D O E OF
Forward checking for A only considers arcs where A is the head. This includes B —+ A, C' — A, D — A.
Enforcing these arcs can change the domains of the tails.

[1 pt] A value is assigned to A, and then forward checking is run for A. Then a value is assigned to B.
Which domains might be changed as a result of running forward checking for B?

O A O B ® C O D ® = O F
Similar to the previous part, forward checking for B enforces the arcs A -+ B, C' — B, and £ — B.
However, because A has been assigned, and a value is assigned to B, which is consistent with A or else
no value would have been assigned, the domain of A will not change.

(iii) [1 pt] A value is assigned to A. Which domains might be changed as a result of enforcing arc consistency

after this assignment?

O A ® ® C ® D ® ®r

Enforcing arc consistency can affect any unassigned variable in the graph that has a path to the assigned
variable. This is because a change to the domain of X results in enforcing all arcs where X is the head,
so changes propagate through the graph. Note that the only time in which the domain for A changes is if
any domain becomes empty, in which case the arc consistency algorithm usually returns immediately and
backtracking is required, so it does not really make sense to consider new domains in this case.

(iv) [1 pt] A value is assigned to A, and then arc consistency is enforced. Then a value is assigned to B. Which

domains might be changed as a result of enforcing arc consistency after the assignment to B?

O A O B ® C O D ® & ®r
After assigning a value to A, and enforcing arc consistency, future assignments and enforcing arc consis-
tency will not result in a change to As domain. This means that Ds domain won’t change because the
only arc that might cause a change, D — A will never be enforced.

You decide to try a new approach to using arc consistency in which you initially enforce arc consistency, and
then enforce arc consistency every time you have assigned an even number of variables.

You have to backtrack if, after a value has been assigned to a variable, X, the recursion returns at X without a
solution. Concretely, this means that for a single variable with d values remaining, it is possible to backtrack
up to d times. For each of the following constraint graphs, if each variable has a domain of size d, how many
times would you have to backtrack in the worst case for each of the specified orderings?

(i) [6 pts]

0202020 CRNNs
A-E-B-D-C: 2d
C-B-D-E-A: 0

If no solution containing the current assignment exists on a tree structured CSP, then enforcing arc consis-
tency will always result in an empty domain. This means that running arc consistency on a tree structured

(ii)

CSP will immediately tell you whether or not the current assignment is part of a valid solution, so you
can immediately start backtracking without further assignments.

A—-B—-C—-D—F and C — B—D — E — A are both linear orderings of the variables in the tree,
which is essentially the same as running the two pass algorithm, which will solve a tree structured CSP
with no backtracking.

A—FE— B — D — (C'is not a linear ordering, so while the odd assignments are guaranteed to be part
of a valid solution, the even assignments are not (because arc consistency was not enforced after assigning
the odd variables). This means that you may have to backtrack on every even assignment, specifically
E and D. Note that because you know whether or not the assignment to E is valid immediately after
assigning it, the backtracking behavior is not nested (meaning you backtrack on F up to d times without
assigning further variables). The same is true for D, so the overall behavior is backtracking 2d times.

[6 pts]

o o A—B-C—D-E-F—G: d2
F-D-B-A-C-G-E: d* +d

C-A-F-E-B-G-D: d?

A—B—-C—D—FE—F—G: The initial assignment of A, B might require backtracking on both variables,
because there is no guarantee that the initial assignment to A is a valid solution. Because A is a cutset
for this graph, the resulting graph consists of two trees, so enforcing arc consistency immediately returns
whether the assignments to A and B are part of a solution, and you can begin backtracking without
further assignments.

F—D—-B—-A—-C—-G-— E: Until A is assigned, there is no guarantee that any of the previous
values assigned are part of a valid solution. This means that you may be required to backtrack on all
of them, resulting in d* times. Furthermore, the remaining tree is not assigned in a linear order, so fur-
ther backtracking may be required on G (similar to the second ordering above) resulting in a total of d*+d.

C—-—A—F—FE—-B—G-— D: This ordering is similar to the first one. except that the resulting
trees are not being assigned in linear order. However, because each tree only has a single value assigned
in between each run of arc consistency, no backtracking will be required (you can think of each variable
as being the root of the tree, and the assignment creating a new tree or two where arc consistency has
been enforced), resulting in a total of d? times.

Q1. [9 pts| Search

Node hl h2
A 9.5 | 10
B 9 12
C 8 10
D 7 8
E 1.5 1
F 4 145
G 0 0

Consider the state space graph shown above. A is the start state and G is the goal state. The costs for each edge
are shown on the graph. Each edge can be traversed in both directions. Note that the heuristic h; is consistent but
the heuristic ho is not consistent.

(a)

(b)

[4 pts] Possible paths returned

For each of the following graph search strategies (do not answer for tree search), mark which, if any, of the
listed paths it could return. Note that for some search strategies the specific path returned might depend on
tie-breaking behavior. In any such cases, make sure to mark all paths that could be returned under some
tie-breaking scheme.

Search Algorithm A-B-D-G | A-C-D-G | A-B-C-D-F-G
Depth first search X X X
Breadth first search X X

Uniform cost search X

A* search with heuristic hy X

A* search with heuristic hy X

The return paths depend on tie-breaking behaviors so any possible path has to be marked. DFS can return
any path. BFS will return all the shallowest paths, i.e. A-B-D-G and A-C-D-G. A-B-C-D-F-G is the optimal
path for this problem, so that UCS and A* using consistent heuristic h; will return that path. Although, hs
is not consistent, it will also return this path.

Heuristic function properties
Suppose you are completing the new heuristic function hz shown below. All the values are fixed except h3(B).

Node A[BI[C|[D[E]|F |G
hs |10 2] 9|7 15450

For each of the following conditions, write the set of values that are possible for h3(B). For example, to denote
all non-negative numbers, write [0, co], to denote the empty set, write @, and so on.

(i) [1 pt] What values of h3(B) make h; admissible?

To make hs admissible, hs(B) has to be less than or equal to the actual optimal cost from B to goal G,
which is the cost of path B-C-D-F-G, i.e. 12. The answer is 0 < h3(B) < 12

(ii) [2 pts] What values of h3(B) make h3 consistent?

All the other nodes except node B satisfy the consistency conditions. The consistency conditions that do
involve the state B are:

h(A) < c(A,B)+h(B) h(B)

< <
h(C) < ¢(C,B)+ h(B) h(B) <
h(D) < ¢(D,B) + h(B) h(B) <

¢(B,A)+ h(A)
c(B,C)+ h(0)
¢(B,D) + h(D)

Filling in the numbers shows this results in the condition: 9 < hz(B) < 10

(iii) [2 pts] What values of h3(B) will cause A* graph search to expand node A, then node C,
then node B, then node D in order?

The A* search tree using heuristic h3 is on the right. In order to
make A* graph scarch expand node A, then node C, then node
B, suppose h3(B) = x, we need

1+2>13 f=1+x 9
5+x <14 (expand B') or 1+z <14 (expand B)

@ f=4+9=13

so we can get 12 < h3(B) < 13 f=5+x 0 f=7+7=14

Q2. |9 pts| InvisiPac

Pacman finds himself to have an invisible “friend”, InvisiPac. Whenever InvisiPac visits
a square with a food pellet, InvisiPac will eat that food pellet—giving away its location at
that time. Suppose the maze’s size is MxN and there are F food pellets at the beginning.

Pacman and InvisiPac alternate moves. Pacman can move to any adjacent square (in-
cluding the one where InvisiPac is) that are not walls, just as in the regular game. After
Pacman moves, InvisiPac can teleport into any of the four squares that are adjacent to
Pacman, as marked with the dashed circle in the graph. InvisiPac can occupy wall squares.

(a) For this subquestion, whenever InvisiPac moves, it chooses randomly from the squares adjacent to Pacman.
The dots eaten by InvisiPac don’t count as Pacman’s score. Pacman’s task is to eat as many food pellets as
possible.

(i) [1 pt] Which of the following is best suited to model this problem from Pacman’s perspective?

state space search CSPp minimax game RL

InvisiPac moves to each adjacent square randomly with probably _11 From pacman’s point of view, it is a
MDP problem with the transition function reflecting this uncertainty.

(ii) [2 pts] What is the size of a minimal state space for this problem? Give your answer as a product
of factors that reference problem quantities such as M, N, F, etc. as appropriate. Below each factor,
state the information it encodes. For example, you might write 4 x M N and write number of directions
underneath the first term and Pacman’s position under the second.

27 x M'N (boolean vector for whether each food has been eaten, pacman’s position)

(b) For this subquestion, whenever InvisiPac moves, it always moves into the same square relative to Pacman. For
example, if InvisiPac starts one square North of Pacman, InvisiPac will always move into the square North of
Pacman. Pacman knows that InvisiPac is stuck this way, but doesn’t know which of the four relative locations
he is stuck in. As before, if InvisiPac ends up being in a square with a food pellet, it will eat it and Pacman
will thereby find out InvisiPac’s location. Pacman’s task is to find a strategy that minimizes the worst-case
number of moves it could take before Pacman knows InvisiPac’s location.

(i) [1 pt] Which of the following is best suited to model this problem from Pacman’s perspective?

’state space search CSp minimax game MDP RL

The invisiPac will be stuck in one of the four squares relative to Pacman. It is a search problem and state
space include the boolean vector for which each of the four locations invisiPac might be. The goal is to
reach a state only one possible location the invisiPac can be.

(ii) [2 pts] What is the size of a minimal state space for this problem? Give your answer as a product
of factors that reference problem quantities such as M, N, F, etc. as appropriate. Below ecach factor,
state the information it encodes. For example, you might write 4 x M N and write number of directions
underneath the first term and Pacman’s position under the second.

28 x MN x 2* (boolean vector for whether each food has been eaten, pacman’s position, boolean vector
for which each of the four locations invisiPac might be)

(c) For this subquestion, whenever InvisiPac moves, it can choose freely between any of the four squares adjacent
to Pacman. InvisiPac tries to eat as many food pellets as possible. Pacman’s task is to eat as many food pellets
as possible.

(i) [1 pt] Which of the following is best suited to model this problem from Pacman’s perspective?

state space search CSpP minimax game MDP RL

InvisiPac tries to eat as many food pellets as possible, thus plays adversially. It is a minimax game
problem.

(ii) [2 pts] What is the size of a minimal state space for this problem? Give your answer as a product
of factors that reference problem quantities such as M, N, F, etc. as appropriate. Below each factor,
state the information it encodes. For example, you might write 4 x M N and write number of directions
underneath the first term and Pacman’s position under the second.
2F x M N (boolean vector for whether each food has been eaten, pacman’s position)

Q3. [27 pts| CSPs

(a) Pacman’s new house

After years of struggling through mazes, Pacman has finally made peace with the ghosts, Blinky, Pinky, Inky,
and Clyde, and invited them to live with him and Ms. Pacman. The move has forced Pacman to change the
rooming assignments in his house, which has 6 rooms. He has decided to figure out the new assignments with
a CSP in which the variables are Pacman (P), Ms. Pacman (M), Blinky (B), Pinky (K), Inky (I), and Clyde
(C), the values are which room they will stay in, from 1-6, and the constraints are:

(i)

(ii)

i) No two agents can stay in the same room

i)y P >3 vi) B is even

iii) K is less than P vii) I'is not 1 or 6
iv) M is either 5 or 6 viil) |[I-C| = 1
v)P>M ix) |[P-B| =2

[1 pt] Unary constraints On the grid below cross out the values from each domain that are eliminated
by enforcing unary constraints.

P + 2 3 4 5 6
B + 2 3 4 &5 6
cC 1 2 3 4 5 6
K 1 2 3 4 5 6
I + 2 3 4 5 6
M 1+ 2 3 4 5 6
The unary constraints are ii, iv, vi, and vii. ii crosses out 1,2, and 3 for P. iv crosses out 1,2,3.4 for M.

vi crosses out 1,3, and 5 for B. vii crosses out 1 and 6 for I. K and C have no unary constraints, so their
domains remain the same.

[1 pt] MRV According to the Minimum Remaining Value (MRV) heuristic, which variable should be
assigned to first?

OFP OB O C O K O 1 oM

M has the fewest value remaining in its domain (2), so it should be selected first for assignment.

(iii) [2 pts] Forward Checking For the purposes of decoupling this problem from your solution to the previous

problem, assume we choose to assign P first, and assign it the value 6. What are the resulting domains
after enforcing unary constraints (from part i) and running forward checking for this assignment?

P 6
B + 2 3 4 & 6
c 1 2 3 4 5 6
K 1 2 3 4 5 6

I + 2 3 4 5 6
M + 2 3 4 5 6

In addition to enforcing the unary constraints from part i, the domains are further constrained by all
constraints involving P. This includes constraints i, iii, v, and ix. i removes 6 from the domains of all
variables. iii removes 6 from the domain of K (already removed by constraint i). v removes 6 from the
domain of M (also already removed by i). ix removes 2 and 6 from the domain of B.

(iv) [3 pts] Iterative Improvement Instead of running backtracking search, you decide to start over and

run iterative improvement with the min-conflicts heuristic for value selection. Starting with the following
assignment:

P:6, B4, C:3, K:2, I:1, M:5

First, for each variable write down how many constraints it violates in the table below.
Then, in the table on the right, for all variables that could be selected for assignment, put an x in any box

that corresponds to a possible value that could be assigned to that variable according to min-conflicts.
When marking next values a variable could take on, only mark values different from the current one.

Variable | # violated 1123|456
P 0 P
B 0 B
C 1 C X
K 0 K
1 2 1 X X
M 0 M

Both T and C violate constraint viii, because |I-C|=2. T also violates constraint vii. No other variables
violate any constraints. According to iterative improvement, any conflicted variable could be selected for
assignment, in this case I and C. According to min-conflicts, the values that those variables can take on
are the values that minimize the number of constraints violated by the variable. Assigning 2 or 4 to I
causes it to violate constraint i, because other variables already have the values 2 and 4. Assigning 2 to
C also only causes C to violate 1 constraint.

(b) Variable ordering
We say that a variable X is backtracked if, after a value has been assigned to X, the recursion returns at X
without a solution, and a different value must be assigned to X.
For this problem, consider the following three algorithms:

1.
2.
3.

(1)

oy

(ii)

—~

.° . . F-E-D-C-B-A | F-E-D-C-B-A | [F-ED-CB-A
\-_‘.___ ____'._,/

Run backtracking search with no filtering
Initially enforce arc consistency, then run backtracking search with no filtering

Initially enforce arc consistency, then run backtracking search while enforcing arc consistency after each
assignment

[5 pts]
For each algorithm, circle all orderings of variable assignments that guarantee that no backtracking will
be necessary when finding a solution to the CSP represented by the following constraint graph.

Algorithm 1 Algorithm 2 Algorithm 3

A-B-C-D-E-F | A-B-C-D-E-F A-B-C-D-E-F

C-A-B-D-E-F | |C-A-B-D-E-F| | [C-A-B-D-E-F |

B-D-A-F-E-C | B-D-A-F-E-C B-D-A-F-E-C

D-E-F-C-B-A | D-E-F-C-B-A D-E-F-C-B-A

B-C-D-A-E-F | | B-C-D-A-E-F

| B-C-D-A-E-F

Algorithm 1:

No filtering means that there are no guarantees that an assignment to one variable has consistent assign-
ments in any other variable, so backtracking may be necessary.

Algorithm 2:

This algorithm is very similar to the tree-structured CSP algorithm presented in class, in which arcs are
enforced from one right to left, and then variables are assigned from left to right. The arcs enforced in
that algorithm are a subset of all arcs enforced when enforcing arc consistency. Thus, any linear ordering
of variables in which each variable is assigned before all of its children in the tree will guarantee no back-
tracking.

Algorithm 3:

Any first assignment can be the root of a tree, which, from class, we know is consistent and will not
require backtracking. This assignment can then be viewed as conditioning the graph on that variable,
and after re-running arc consistency, it can be removed from the graph. This results in either one or two
tree-structured graphs that are also arc consistent, and the process can be repeated.

[5 pts]

For each algorithm, circle all orderings of variable assignments that guarantee that no more than two
variables will be backtracked when finding a solution to the CSP represented by the following constraint
graph.

Algorithm 1

Algorithm 2

Algorithm 3

C-F-A-B-E-D-G-H

F-C-A-H-E-B-D-G

A-B-C-E-D-F-G-H

G-C-H-F-B-D-E-A

A-B-E-D-G-H-C-F

A-D-B-G-E-H-C-F

C-F-A-B-E-D-G-H

F-C-A-H-E-B-D-G

A-B-C-E-D-F-G-H

G-C-H-F-B-D-E-A

A-B-E-D-G-H-C-F

A-D-B-G-E-H-C-F

| C-F-A-B-E-D-G-H|

| F-C-A-H-E-B-D-G |

A-B-C-E-D-F-G-H

| G-C-H-F-B-D-E-A |

A-B-E-D-G-H-C-F

A-D-B-G-E-H-C-F

Algorithm 1:

This might backtrack for the same reason as algorithm 1 for the previous problem.

Algorithm 2:

If the first two assignments are not a cutset (C-F, C-G, or F-B), the graph will still contain cycles, for
which there is no guarantee that backtracking will not be necessary. If the first two assignments are
a cutset, the remaining graph will be a tree. However, because arc consistency was not enforced after
the assignment, there is no guarantee against further backtracking. To see this, consider the sub-graph
A,B,C,E, with domains {1,2,3}, and constraints A=C, B>A, E=C+2, B>C, E=B. If this is assigned in
the order C-A-B-E, then by assigning 1 to C and A, assigning either 1 or 2 to B would result in an empty
domain for E and cause B to backtrack.

Algorithm 3:

After assigning the cutset, the remaining graph is a tree, which guarantees no further backtracking with
algorithm 3 as seen in the previous problem.

10

(c) All Satisfying Assignments Now consider a modified CSP in which we wish to find every possible satisfying
assignment, rather than just one such assignment as in normal CSPs. In order to solve this new problem,
consider a new algorithm which is the same as the normal backtracking search algorithm, except that when it
sees a solution, instead of returning it, the solution gets added to a list, and the algorithm backtracks. Once
there are no variables remaining to backtrack on, the algorithm returns the list of solutions it has found.

For each graph below, select whether or not using the MRV and/or LCV heuristics could affect the num-
ber of nodes expanded in the search tree in this new situation.

The remaining parts all have a similar reasoning. Since every value has to be checked regardless of the outcome
of previous assignments, the order in which the values are checked does not matter, so LCV has no effect.

In the general case, in which there are constraints between variables, the size of each domain can vary based
on the order in which variables are assigned, so MRV can still have an effect on the number of nodes expanded
for the new ”find all solutions” task.

The one time that MRV is guaranteed to not have any effect is when the constraint graph is completely
disconnected, as is the case for part i. In this case, the domains of each variable do not depend on any other
variable’s assignment. Thus, the ordering of variables does not matter, and MRV cannot have any effect on
the number of nodes expanded.

(i) [2 pts]
@ Neither MRV nor LCV can have an effect.
@ (O Only MRV can have an effect.
@ (O Only LCV can have an effect .

(O Both MRV and LCV can have an effect.

(i) [2 pts]

(iii) [2 pts]

Neither MRV nor LCV can have an effect.
Only MRV can have an effect.

Only LCV can have an effect .

O O e O

Both MRV and LCV can have an effect.

(O Neither MRV nor LCV can have an effect.
o @® Only MRV can have an effect.
(:) @C}@ ; ®_© (O Only LCV can have an effect .
o (O Both MRV and LCV can have an effect.
(iv) [2 pts]
(O Neither MRV nor LCV can have an effect.
@ Only MRV can have an effect.
° 0“ a (O Only LCV can have an effect .
(O Both MRV and LCV can have an effect.

11

(v) [2 pts]
(O Neither MRV nor LCV can have an effect.

@ Ouly MRV can have an effect.

(O Only LCV can have an effect .

(O Both MRV and LCV can have an effect.

12

Q2. [17 pts] CSPs: Midterm 1 Staff Assignments

CS188 Midterm I is coming up, and the CS188 staff has yet to write the test. There are a total of 6 questions on
the exam and each question will cover a topic. Here is the format of the exam:

e (l. Search

e 2. Games

e 3. CSPs

e gq4. MDPs

e 5. True/False

e (6. Short Answer

There are 7 people on the course staff: Brad, Donahue, Ferguson, Judy, Kyle, Michael, and Nick. Each of them
is responsible to work with Prof. Abbeel on one question. (But a question could end up having more than one
staff person, or potentially zero staff assigned to it.) However, the staff are pretty quirky and want the following
constraints to be satisfied:

(i) Donahue (D) will not work on a question together with Judy (J).

(i) Kyle (K) must work on either Search, Games or CSPs

(iii) Michael (M) is very odd, so he can only contribute to an odd-numbered question.
(iv) Nick (N) must work on a question that’s before Michael (M)’s question.
(v) Kyle (K) must work on a question that’s before Donahue (D)’s question
(vi) Brad (B) does not like grading exams, so he must work on True/False.
(vii) Judy (J) must work on a question that’s after Nick (N)’s question.
(viii) If Brad (B) is to work with someone, it cannot be with Nick (N).

(ix) Nick (N) cannot work on question 6.

(x) Ferguson (F) cannot work on questions 4, 5, or 6

(xi) Donahue (D) cannot work on question 5.

(xii) Donahue (D) must work on a question before Ferguson (F)’s question.

(a)

(b)

(c)

(d)

[2 pts] We will model this problem as a constraint satisfaction problem (CSP). Our variables correspond to each
of the staff members, J, F, N, D, M, B, K, and the domains are the questions 1, 2, 3, 4, 5, 6. After applying
the unary constraints, what are the resulting domains of each variable? (The second grid with variables and
domains is provided as a back-up in case you mess up on the first one.)

B 5

D 1 2 3 4 6
F 1 2 3

J 1 2 3 4 5 6
K 1 2 3

N 1 2 3 4 5

M 1 3 5

[2 pts] If we apply the Minimum Remaining Value (MRV) heuristic, which variable should be assigned first?

Brad — because he has the least values left in his domain.

[3 pts] Normally we would now proceed with the variable you found in (b), but to decouple this question from
the previous one (and prevent potential errors from propagating), let’s proceed with assigning Michael first.
For value ordering we use the Least Constraining Value (LCV) heuristic, where we use Forward Checking to
compute the number of remaining values in other variables domains. What ordering of values is prescribed by
the LCV heuristic? Include your work—i.e., include the resulting filtered domains that are different for the
different values.

Michael’s value will be assigned as 5, 3, 1, in that order.

Why these variables? They are the only feasible variables for Michael. Why this order? This is the increasing
order of the number of constraints on each variable.

The only binary constraint incolving Michael is “Nick (N) must work on a question that’s before Michael (M)’s
question.” So, only Nick’s domain is affected by forward checking on these assignments, and it will change
from {1, 2, 3,4, 5} to {1, 2, 3, 4}, {1, 2}, and { } for the assignments 5, 3, 1, respectively.

Realizing this is a tree-structured CSP, we decide not to run backtracking search, and instead use the efficient
two-pass algorithm to solve tree-structured CSPs. We will run this two-pass algorithm after applying the unary
constraints from part (a). Below is the linearized version of the tree-structured CSP graph for you to work with.

(i) [6 pts] First Pass: Domain Pruning. Pass from right to left to perform Domain Pruning. Write the
values that remain in each domain below each node in the figure above.

NS O Sy A
OO=GROO=ON0

N J

ST W N~ /(_

SOl W~
STk W~
STk W N~
ST W N
SO W N =
S T W N~

Remaining values in each domain after the domain pruning right-to-left pass:
Kyle: 1
Donahue: 1,2
Ferguson: 1,2,3
Judy: 2,3,4,5,6
Nick: 1,2,3,4
Brad: 5
Michael: 1,3,5
(ii) [4 pts] Second Pass: Find Solution. Pass from left to right, assigning values for the solution. If there
is more than one possible assignment, choose the highest value.

Assigned Values after the left-to-right pass:

Kyle: 1
Donahue: 2
Ferguson: 3
Judy: 6
Nick: 4
Brad: 5
Michael: 5

Q3. |11 pts] Solving Search Problems with MDPs

The following parts consider a Pacman agent in a deterministic environment. A goal state is reached when there are
no remaining food pellets on the board. Pacman’s available actions are {N, S, F, W}, but Pacman can not move
into a wall. Whenever Pacman eats a food pellet he receives a reward of +1.

Assume that pacman eats a food pellet as soon as he occupies the location of the food pellet—i.e., the reward
is received for the transition into the square with the food pellet.

Consider the particular Pacman board states shown below. Throughout this problem assume that Vj(s) = 0 for
all states, s. Let the discount factor, v = 1.

(a)

(b)

(c)

(d)

(e)

State A

[2 pts] What is the optimal value of state A, V*(A)?
1

[2 pts] What is the optimal value of state B, V*(B)?

1

The reason the answers are the same for both (b) and (a) is that there is no penalty for existing. With a
discount factor of 1, eating the food at any future step is just as valuable as eating it on the next step. An
optimal policy will definitely find the food, so the optimal value of any state is always 1.

[2 pts] At what iteration, k, will Vj(B) first be non-zero?

5

The value function at iteration k is equivalent to the maximum reward possible within k steps of the state in
question, B. Since the food pellet is exactly 5 steps away from Pacman in state B, V5(B) = 1 and Vi <5(B) = 0.

[2 pts] How do the optimal g-state values of moving W and E from state A compare? (choose one)

O QUW)>Q(AE) O QAW)<Q(4E) @ Q(AW)=Q'(4E)

Once again, since v = 1, the optimal value of every state is the same, since the optimal policy will eventually
eat the food.

[3 pts] If we use this MDP formulation, is the policy found guaranteed to produce the shortest path from
pacman’s starting position to the food pellet? If not, how could you modify the MDP formulation to guarantee
that the optimal policy found will produce the shortest path from pacman’s starting position to the food pellet?

No. The Q-values for going West and Fast from state A are equal so there is no preference given to the
shortest path to the goal state. Adding a negative living reward (example: -1 for every time step) will help
differentiate between two paths of different lengths. Setting v < 1 will make rewards seen in the future worth
less than those seen right now, incentivizing Pacman to arrive at the goal as early as possible.

Q1. |10 pts| Search: Algorithms

Consider the state space search problem shown to
the right. A is the start state and the shaded states
are goals. Arrows encode possible state transitions,
and numbers by the arrows represent action costs.
Note that state transitions are directed; for example,
A — B is a valid transition, but B — A is not.
Numbers shown in diamonds are heuristic values that
estimate the optimal (minimal) cost from that node
to a goal.

For each of the following search algorithms, write down the nodes that are removed from fringe in the course of the
search, as well as the final path returned. Because the original problem graph is a tree, the tree and graph versions
of these algorithms will do the same thing, and you can use either version of the algorithms to compute your answer.

Assume that the data structure implementations and successor state orderings are all such that ties are broken
alphabetically. For example, a partial plan S — X — A would be expanded before S — X — B; similarly,
S — A — Z would be expanded before S —+ B — A.

(a) [2 pts] Depth-First Search (ignores costs)

(b)

(c)

(d)

(e)

Nodes removed from fringe:

Path returned: A, B, F

A, B, E,F

[2 pts] Breadth-First Search (ignores costs)

Nodes removed from fringe:

Path returned: A, D

[2 pts] Uniform-Cost Search

Nodes removed from fringe:

Path returned: A, C, G

[2 pts] Greedy Search

Nodes removed from fringe:

Path returned: A, D

[2 pts] A* Search

Nodes removed from fringe:

Path returned: A, C. G

A,B,C,D

A, C, B, G

AC G

Q2. |6 pts] Search: Heuristic Function Properties

For the following questions, consider the search problem shown on the left. It has only three states, and three
directed edges. A is the start node and G is the goal node. To the right, four different heuristic functions are defined,
numbered I through IV.

3 I1I
o :

(a) [4 pts] Admissibility and Consistency

o>
o

y
@

[a—

=
quxowk’:';
=

| | x| —|
=

=
ooooa

For each heuristic function, circle whether it is admissible and whether it is consistent with respect to the
search problem given above.

Admissible? Consistent?
I Yes No Yes
II Yes Yes
11 Yes No Yes No
v Yes No Yes

IT is the only inadmissible heuristic, as it overestimates the cost from B: h(B) = 4, when the actual cost to G is 3.

To check whether a heuristic is consistent, ensure that for all paths, h(N) — h(L) < path(N — L), where N and L
stand in for the actual nodes. In this problem, h(G) is always 0, so making sure that the direct paths to the goal
(A — G and B — @) are consistent is the same as making sure that the heuristic is admissible. The path from A to
B is a different story.

Heuristic I is not consistent: h(A) —h(B)=4—-1=
Heuristic IIT is consistent: h(A) —h(B)=4-3=1
)

(b) [2 pts] Function Domination
Recall that domination has a specific meaning when talking about heuristic functions.
Circle all true statements among the following.

1. Heuristic function III dominates I'V.

2. Heuristic function IV dominates III.

3. ’ Heuristic functions IIT and IV have no dominance relationship.

N

. Heuristic function I dominates IV.

5. ’ Heuristic function IV dominates 1.

6. Heuristic functions I and IV have no dominance relationship.

For one heuristic to dominate another, all of its values must be greater than or equal to the corresponding
values of the other heuristic. Simply make sure that this is the case. If it is not, the two heuristics have no
dominance relationship.

Q3. [8 pts] Search: Slugs

You are once again tasked with planning ways to get various insects out of a maze. This time, it’s slugs! As shown
in the diagram below to the left, two slugs A and B want to exit a maze via their own personal exits. In each time
step, both slugs move, though each can choose to either stay in place or move into an adjacent free square. The slugs
cannot move into a square that the other slug is moving into. In addition, the slugs leave behind a sticky, poisonous
substance and so they cannot move into any square that either slug has ever been in. For example, if both slugs
move right twice, the maze is as shown in the diagram below to right, with the z squares unpassable to either slug.

o] ><

You must pose a search problem that will get them to their exits in as few time steps as possible. You may assume
that the board is of size N by M; all answers should hold for a general instance, not simply the instance shown
above. (You do not need to generalize beyond two slugs.)

(a) [3 pts] How many states are there in a minimal representation of the space? Justify with a brief description of
the components of your state space.

2MN (M N)?
9 MN

The state includes a bit for each of the M N squares, indicating whether the square has been visited (possibili-

ties). It also includes the locations of each slug (M N possibilities for each of the two slugs).

(b) [2 pts] What is the branching factor? Justify with a brief description of the successor function.
5 x 5 = 25 for the first time step, 4 x 4 = 16 afterwards.
At the start state each slug has at most five possible next locations (North, South, East, West, Stay). At all future
time steps one of those options will certainly be blocked off by the snail’s own trail left at the previous time step.

Only 4 possible next locations remain.

We accepted both 25 and 16 as correct answers.

(c) [3 pts] Give a non-trivial admissible heuristic for this problem.
max(maze distance of bug A to its exit, maze distance of bug B to its exit)

Many other correct answers are possible.

Q4. |10 pts] Value Functions

Consider a general search problem defined by:

e A set of states, S.

A start state sg.

A set of goal states G, with G C S.

e A successor function Succ(s) that gives the set of states s’ that you can go to from the current state s.

For each successor s’ of s, the cost (weight) W (s, s’) of that action.

As usual, the search problem is to find a lowest-cost path from the state state sy to a goal g € G. You may assume
that each non-goal state has at least one successor, that the weights are all positive, and that all states can reach a
goal.

Define C(s) to be the optimal cost of the state s; that is, the lowest-cost path from s to any goal. For g € G, clearly
C(g) =0.

(a) [4 pts] Write a Bellman-style (one-step lookahead) equation that expresses C(s) for a non-goal s in terms of
the optimal costs of other states.

C(s) = min [W(s,s") + C(s)]

s’€Suce(s)

(b) [2 pts] Consider a heuristic function h(s) with h(s) > 0. What relation must hold between h(s) and C(s) for
h(s) to be an admissible heuristic? (Your answer should be a mathematical expression.)

h(s) < C(s),¥s € S

(c) [4 pts] By analogy to value iteration, define Cj(s) to be the minimum cost of any plan starting from s that is
either length k or reaches a goal in at most k actions. Imagine we use C} as a heuristic function.
Circle all true statement(s) among the following:

1. Ci(s) might be inadmissible for any given value of k.

2.

C(s) is admissible for all k. ‘ If there is a goal reachable within k actions, then Cy(s) gives the exact cost

to the nearest such goal. If all goals require plans of longer than k to reach, then the cheapest plan of
length k& underestimates the true cost.

3. Ci(s) is only guaranteed to be admissible if k exceeds the length of the shortest (in steps) optimal path
from a state to a goal.

4. Ck(s) is only guaranteed to be admissible if k exceeds the length of the longest (in steps) optimal path
from a state to a goal.

5. ’ C(s) (the optimal costs) are admissible.

6. Ci(s) might be inconsistent for any given value of k.

=~

Ck(s) is consistent for all k. ‘ Moving from s to a successor s’ decreases Cy by at most W (s, s’). Since

the heuristic value decreases by at most the cost of the transition, the heuristic is consistent.

8. Ck(s) is only guaranteed to be consistent if k exceeds the length of the shortest (in steps) optimal path
from a state to a goal.

9. Ck(s) is only guaranteed to be consistent if & exceeds the length of the longest (in steps) optimal path
from a state to a goal.

10. ’ C(s) (the optimal costs) are consistent.

Q5. |9 pts] CSPs: Apple’s New Campus

Apple’s new circular campus is nearing completion. Unfortunately, the chief architect on the project was using
Google Maps to store the location of each individual department, and after upgrading to iOS 6, all the plans for the
new campus were lost!

The following is an approximate map of the campus:

South

The campus has six offices, labeled 1 through 6, and six departments:

Legal (L)

Maps Team (M)
Prototyping (P)
Engineering (E)

Tim Cook’s office (T)
Secret Storage (S)

Offices can be next to one another, if they share a wall (for an instance, Offices 1-6). Offices can also be across from
one another (specifically, Offices 1-4, 2-5, 3-6).

The Electrical Grid is connected to offices 1 and 6. The Lake is visible from offices 3 and 4. There are two “halves”
of the campus — South (Offices 1-3) and North (Offices 4-6).

The constraints are as follows:

ii.
iii.

iv.

vi.

vii.

Viil.

L)egal wants a view of the lake to look for prior art examples.
T)im Cook’s office must not be across from (M)aps.

P)rototyping must have an electrical connection.

E)ngineering must be across from (T)im Cook’s office.
)

(

(

(

(S)ecret Storage must be next to (E)ngineering.

(

(P)rototyping and (L)egal cannot be next to one another.
(

P)rototyping and (E)ngineering must be on opposite sides of the campus (if one is on the North side, the other
must be on the South side).

No two departments may occupy the same office.

This page is repeated as the second-to-last page of this midterm for you to rip out and use for reference
as you work through the problem.

(a) [3 pts] Constraints. Note: There are multiple ways to model constraint viii. In your answers below, assume
constraint viii is modeled as multiple pairwise constraints, not a large n-ary constraint.

(i) [1 pt] Circle your answers below. Which constraints are unary?

i L] o v e wii vid

(i) [1 pt] In the constraint graph for this CSP, how many edges are there?

Constraint vii connects each pair of variables; there are (2) = 15 such pairs.

(iii) [1 pt] Write out the explicit form of constraint 7ii.
Pe{1,6}

(b) [6 pts] Domain Filtering. We strongly recommend that you use a pencil for the following problems.

(i) [2 pts] The table below shows the variable domains after unary constraints have been enforced and the
value 1 has been assigned to the variable P.

Cross out all values that are eliminated by running Forward Checking after this assignment.

w
W

\O)
(%)
W
&)
(@)}

W
[@x}
(@)

w5 o |z
[==]=] =]

[\D[\DH

OOOJH
N
t
(@)

(ii) [4 pts] The table below shows the variable domains after unary constraints have been enforced, the value
1 has been assigned to the variable P, and now the value 3 has been assigned to variable 7.
Cross out all values that are eliminated if arc consistency is enforced after this assignment. (Note that
enforcing arc consistency will subsume all previous pruning.)

[\)
[e2] o]
Eﬂk
Bl
=]

1

=]
B
(@)

w| 3| m=| vz

[e2] < [e2]
=]
(&)
=]

Q6. [7 pts] CSPs: Properties

(a)

(b)

(c)

(d)

(e)

[1 pt] When enforcing arc consistency in a CSP, the set of values which remain when the algorithm terminates
does not depend on the order in which arcs are processed from the queue.

False

[1 pt] In a general CSP with n variables, each taking d possible values, what is the maximum number of
times a backtracking search algorithm might have to backtrack (i.e. the number of the times it generates an
assignment, partial or complete, that violates the constraints) before finding a solution or concluding that none
exists? (circle one)

0 o(1) O(nd?) O(n2d®) O(d") 00
In general, the search might have to examine all possible assignments.

[1 pt] What is the maximum number of times a backtracking search algorithm might have to backtrack in a
general CSP, if it is running arc consistency and applying the MRV and LCV heuristics? (circle one)

0 o(1) O(nd?) O(n?d?) o(d™) 00
The MRV and LCV heuristics are often helpful to guide the search, but are not guaranteed to reduce back-
tracking in the worst case.
In fact, CSP solving is NP-complete, so any polynomial-time method for solving general CSPs would consititute

a proof of P = NP (worth a million dollars from the Clay Mathematics Institute!).

[1 pt] What is the maximum number of times a backtracking search algorithm might have to backtrack in a
tree-structured CSP, if it is running arc consistency and using an optimal variable ordering? (circle one)

0(1) O(nd?) O(nd®) o(d") >0
Applying arc consistency to a tree-structured CSP guarantees that no backtracking is required, if variables are

assigned starting at the root and moving down towards the leaves.

[3 pts] Constraint Graph Consider the following constraint graph:

In two sentences or less, describe a strategy for efficiently solving a CSP with this constraint structure.

Loop over assignments to the variable in the middle of the constraint graph. Treating this node as a cutset,
the graph becomes four independent tree-structured CSPs, each of which can be solved efficiently.

NAME: 3

1. (12 points) Search

Answer the following questions about the search problem shown above. Break any ties alphabetically. For the
questions that ask for a path, please give your answers in the form ‘S — A — D — G.’

(a) (2 pt) What path would breadth-first graph search return for this search problem?
S—-G

(b) (2 pt) What path would uniform cost graph search return for this search problem?
S—-A-C-G

(¢) (2 pt) What path would depth-first graph search return for this search problem?
S—A—-B-D-G

(d) (2 pt) What path would A* graph search, using a consistent heuristic, return for this search problem?
S—-A-C-G

(e) (4 pt) Consider the heuristics for this problem shown in the table below.
State

>
o
=>
N

QT Q| | »
ool ro| & wo| en
olw|—| o o]

i. (1 pt) Is h; admissible? Yes No

ot
—

ii. (1 pt) Is hy consistent? Yes No

iii. (1 pt) Is he admissible? Yes No

=t

iv. (1 pt) Is ho consistent? Yes No

<

An admissible heuristic must underestimate or be equal to the true cost.
A consistent heuristic must satisfy h(N) — h(L) < path(/N — L) for all paths and nodes N and L.

h1 overestimates the cost S — G as 5 when it is 4, so it is inadmissible.

h1 is not consistent because h(S) — h(A) < path(S — A) is violated as 5 — 3 < 1.
h2 does not overestimate costs and is admissible.

h2 is not consistent because h(S) — h(A) < path(S — A) is violated as 4 — 2 < 1.

NAME:

2. (12 points) Hive Minds: Redux

Let’s revisit our bug friends from assignment 2. To recap, you control one or more insects in a rectangular
maze-like environment with dimensions M x N , as shown in the figures below. At each time step, an insect
can move North, East, South, or West (but not diagonally) into an adjacent square if that square is currently
free, or the insect may stay in its current location. Squares may be blocked by walls (as denoted by the black
squares), but the map is known.

For the following questions, you should answer for a general instance of the problem, not simply for the example
maps shown.

(a) (6 pt) The Flea

You now control a single flea as shown in the maze above, which must reach a designated target location
X. However, in addition to moving along the maze as usual, your flea can jump on top of the walls. When
on a wall, the flea can walk along the top of the wall as it would when in the maze. It can also jump off
of the wall, back into the maze. Jumping onto the wall has a cost of 2, while all other actions (including
jumping back into the maze) have a cost of 1. Note that the flea can only jump onto walls that are in
adjacent squares (either north, south, west, or east of the flea).

i.

ii.

iii.

(2 pt) Give a minimal state representation for the above search problem.

The state is the location of the flea as an (z,y) coordinate. The map is known, including walls and
the goal, and the actions of the flea depend only on its location.

(2 pt) Give the size of the state space for this search problem.

The state space is M x N. The flea can occupy any free location in a given maze, and any square
might be free or a wall in a maze, so any of the M x N locations are possible.

(2 pt) Is the following heuristic admissible? Yes No

hfea = the Manhattan distance from the flea to the goal.

It is yielded by the relaxed problem where the flea passes through walls. It never overestimates because
1. a wall can never decrease the length of a path to the goal and 2. the cost of the flea jumping up a
wall (2) is higher than the cost of moving.

If it is not admissible, provide a nontrivial admissible heuristic in the space below.

(b) (6 pt) Long Lost Bug Friends

You now control a pair of long lost bug friends. You know the maze, but you do not have any information
about which square each bug starts in. You want to help the bugs reunite. You must pose a search
problem whose solution is an all-purpose sequence of actions such that, after executing those actions, both
bugs will be on the same square, regardless of their initial positions. Any square will do, as the bugs have
no goal in mind other than to see each other once again. Both bugs execute the actions mindlessly and
do not know whether their moves succeed; if they use an action which would move them in a blocked
direction, they will stay where they are. Unlike the flea in the previous question, bugs cannot jump onto
walls. Both bugs can move in each time step. Every time step that passes has a cost of one.

i. (2 pt) Give a minimal state representation for the above search problem.

The state is a list of boolean variables, one for each position in the maze, which marks whether the
position could contain a bug. There is no need to separately keep track of the bugs since their starting
positions are not known; to ensure they meet only a single square must be possible for both.

ii. (2 pt) Give the size of the state space for this search problem.

The size is 2™V since every of the M x N possible maze positions must be considered and every
position has a boolean variable. A full state is the product of the individual position states, which

are binary valued for the base of 2.

iii. (2 pt) Give a nontrivial admissible heuristic for this search problem.

hriends = the maximum Manhattan distance of all possible pairs of points the bugs can be in.

This is never an overestimate because the number of steps to join the insects with certainty is at
least the shortest path (with no obstacles) between their farthest possible locations from one another.
Remember that the starting locations are unknown so the bugs cannot simply be controlled to move
toward each other.

NAME: 7

3. (12 points) A* Graph Search

function A* GRAPH SEARCH(problem)
fringe < an empty priority queue
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
closed < an empty set
ADD INITIAL-STATE[problem] to closed
loop
if fringe is empty then
return failure
end if
node <+ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then
return node
end if
for successor in GETSUCCESSORS(problem, STATE[node]) do
if successor not in closed then
ADD successor to closed
fringe < INSERT(MAKE-SUCCESSOR-NODE(successor, node), fringe)
end if
end for
end loop
end function

The above implementation of A* graph search may be incorrect! In the list below circle all of the problems that
the bugs may cause when executing graph search and justify your answer. Note that the fringe is a priority
queue. Nodes are inserted into the fringe using the standard key for A*, namely f = g + h. h is a consistent
heuristic.

(a) The GetSuccessors function could be called multiple times on the same state.
(b

)
)
()
)
)

The algorithm is no longer complete.

The algorithm could return a suboptimal solution.

(d) The implementation is incorrect, but none of the above problems will be caused.

(e) The implementation is correct.

To receive any credit you must briefly justify your answer in space below.

The bug is the insertion of successor into closed at time of insertion of a node into the fringe, rather than at
the time that node gets popped from the fringe. As a consequence of this bug, the first path encountered to a
state will put that state in the closed list. This can cause suboptimality as we only have the guarantee that a
state has been reached optimally once a node reaching it gets popped off the fringe.

(a) is False as when a node that reaches a state s is placed in the fringe, that state s is also put on the closed
list. This means never in the future can a node be placed on the fringe that ends in that same state s,
and hence the same state s can be the argument to GetSuccessors at most once.

(b) is False. A* tree search is complete. The difference is that the above algorithm will cut off parts of the tree
search whenever it has placed a node on the fringe in the past that ends in the same state. So compared
to tree search we only lose copies of subtrees that we are covering. Hence the above algorithm is complete.

(c) is True. See explanation at beginning of solution.

(d) is False.

(e) is False.

4. (21 points) Time Management

Two of our GSIs, Arjun and Woody, are making their schedules for a busy morning. There are five tasks to be
carried out:

(F) Pick up food for the group’s research seminar, which, sadly, takes one precious hour.
(H) Prepare homework questions, which takes 2 consecutive hours.

(P) Prepare the PR2 robot for a group of preschoolers’ visit, which takes one hour.

(S) Lead the research seminar, which takes one hour.

(T) Teach the preschoolers about the PR2 robot, which takes 2 consecutive hours.

The schedule consists of one-hour slots: 8am-9am, 9am-10am, 10am-11am, 11am-12pm. The requirements for
the schedule are as follows:

)
) The PR2 preparation (P) should happen before teaching the preschoolers (T).
) The food should be picked up (F) before the seminar (S).
(d) The seminar (S) should be finished by 10am.
) Arjun is going to deal with food pick up (F) since he has a car.
)

The GSI not leading the seminar (S) should still attend, and hence cannot perform another task (F, T,
P, H) during the seminar.

) The seminar (S) leader does not teach the preschoolers (T).
(h) The GSI who teaches the preschoolers (T) must also prepare the PR2 robot (P).
(i)

(j) Teaching the preschoolers (T) takes 2 consecutive hours, and hence should start at or before 10am.

Preparing homework questions (H) takes 2 consecutive hours, and hence should start at or before 10am.

To formalize this problem as a CSP, use the variables F, H, P, S and T. The values they take on indicate the
GSI responsible for it, and the starting time slot during which the task is carried out (for a task that spans 2
hours, the variable represents the starting time, but keep in mind that the GSI will be occupied for the next
hour also - make sure you enforce constraint (a)!). Hence there are eight possible values for each variable,
which we will denote by A8, A9, A10, A11, W8, W9, W10, W11, where the letter corresponds to the GSI and
the number corresponds to the time slot. For example, assigning the value of A8 to a variables means that this
task is carried about by Arjun from 8am to 9am.

(a) (2 pt) What is the size of the state space for this CSP?
8% since every task variable has 8 values, 4 time slots x 2 GSIs to carry them out, and there are 5 such
tasks.

(b) (2 pt) Which of the statements above include unary constraints?
A unary constraint constrains the domain of a single variable. (d), (e), (i), (j) are unary constraints. (i)
and (j) express both unary constraints (on the time of the tasks) and binary constraints (the length of
tasks excludes other assignments during their time).

(c) (4 pt) In the table below, enforce all unary constraints by crossing out values in the table on the left
below. If you made a mistake, cross out the whole table and use the right one.
F | A8 A9 A10 A1l W8 W9 Wi Wt
H| A8 A9 Al10 A W8 W9 WI0 Wit
P| A8 A9 Al10 All W8 W9 WI0 WII
S| A8 A9 A AH W8 W9 Wi9 Wit
T | A8 A9 A0 AH W8 W9 WI0 Wit

(d) (3 pt) Start from the table above, select the variable S and assign the value A9 to it. Perform forward
checking by crossing out values in the table below. Again the table on the right is for you to use in case
you believe you made a mistake.

NAME:

(f)

(8)

(h)

AS A9 AL AL WSRO WO WIo WL
A8 A9 A0 AH W8 W9 WI0 WH
A8 A9 A10 A1l W8 W9 WI0 WI1

A8 A9 A0 AL W8 W9 Wi Wi

A8 A9 A A W8 W9 WI0 WiE

Forward checking prunes the variables” domains of values inconsistent with S = A9, including: other
choices for S, conflicting time slots for A9 (a), the choices of F that do not precede 9 (¢), W from working
during 9 (f), and A teaching the preschoolers (g).

—H w U Do

(3 pt) Based on the result of (d), what variable will we choose to assign next based on the MRV heuristic
(breaking ties alphabetically)? Assign the first possible value to this variable, and perform forward check-
ing by crossing out values in the table below. Again the table on the right is for you to use in case you
believe you made a mistake.
Variable F is selected and gets assigned value A8 .

F | A8 A9 Al A W8 W9 Wi Wit

H|AS A9 A0 A W8 W9 WI0 Wi

P|A8 A9 Al0 All W8 W9 WI0 WIl

S|1AS A9 A AH WS W9 W8 Wi

T A A9 A A W8 W9 WI0 W
Have we arrived at a dead end (i.e., has any of the domains become empty)?
No.
(4 pt) We return to the result from enforcing just the unary constraints, which we did in (c). Select the
variable S and assign the value A9. Enforce arc consistency by crossing out values in the table below.

F | A8 A9 A A WS W9 Wi W

H|AS A9 A0 A W8 W9 Wi W4

P|lAS A9 A AH W8 W9 Wi Wit

S|1A8 A9 A AH W8 W9 Wi Wi

T|AS A9 A A W8 W9 WI0 Wit

(2 pt) Compare your answers to (d) and to (f). Does arc consistency remove more values or less values
than forward checking does? Explain why.

Arc consistency removes more values by checking more relationships between variables: AC checks consis-
tency between every pair of variables, and re-checks after domain pruning, while FC only checks between
assigned and unassigned variables.

(1 pt) Check your answer to (f). Without backtracking, does any solution exist along this path? Provide
the solution(s) or state that there is none.

AC along this path gives 1 solution: F: A8 H: A10 P: W8 S: A9 T: W10

Backtracking is unnecessary since the constraints have been enforced by arc consistency and only single
values remained in each domain.

NAME: 3

1. (12 points) Search

Consider the search graph shown below. S is the start state and G is the goal state. All edges are bidirectional.

For each of the following search strategies, give the path that would be returned, or write none if no path will
be returned. If there are any ties, assume alphabetical tiebreaking (i.e., nodes for states earlier in the alphabet
are expanded first in the case of ties).

(a) (1 pt) Depth-first graph search
S-B-E-F-G

(b) (1 pt) Breadth-first graph search
S-C-G

(¢) (1 pt) Uniform cost graph search
S-B-E-G

(d) (1 pt) Greedy graph search
S-B-E-G

(e) (2 pt) A* graph search
S-B-E-C

For the following question parts, all edges in the graphs discussed have cost 1.

(f)

(8)

(3 pt) Suppose that you are designing a heuristic h for the graph
on the right. You are told that h(F) = 0.5, but given no other
information. What ranges of values are possible for h(D) if the
following conditions must hold? Your answer should be a range,
e.g. 2 < h(D) < 10. You may assume that h is nonnegative.

i. h must be admissible
0<h(D)<3
The path to goal from D is 3.

ii. h must be admissible and consistent
0 < h(D) <25
In order for h(E) to be consistent, it must hold that h(E) —
h(F) < 1, since the path from E to F' is of cost 1. Similarly, it
must hold that h(D) — h(F) = h(D)—0.5 <2, or h(D) < 2.5.

(3 pt) Now suppose that h(F) = 0.5, h(E) = 1.1, and all other heuris-
tic values except h(B) are fixed to zero (as shown on the right). For
each of the following parts, indicate the range of values for h(B) that
yield an admissible heuristic AND result in the given expansion order-
ing when using A* graph search. If the given ordering is impossible
with an admissible heuristic, write none. Break ties alphabetically.
Again, you may assume that h is nonnegative.

i. B expanded before E expanded before F
0.0 < h(B) < 1.1

ii. E expanded before B expanded before F
1.1 < h(B) <15

NAME: 5

2. (12 points) Formulation: Holiday Shopping

You are programming a holiday shopping robot that will drive from store to store in order to buy all the gifts
on your shopping list. You have a set of N gifts G = {g1, 92, ...gn} that must be purchased. There are M
stores, S = {s1, S2,... 8} each of which stocks a known inventory of items: we write g € s; if store s; stocks
gift gr. Shops may cover more than one gift on your list and will never be out of the items they stock. Your
home is the store s1, which stocks no items.

The actions you will consider are travel-and-buy actions in which the robot travels from its current location s;
to another store s; in the fastest possible way and buys whatever items remaining on the shopping list that
are sold at s;. The time to travel-and-buy from s; to s; is ¢(s;, ;). You may assume all travel-and-buy actions
represent shortest paths, so there is no faster way to get between s; and s; via some other store. The robot
begins at your home with no gifts purchased. You want it to buy all the items in as short a time as possible
and return home.

For this planning problem, you use a state space where each state is a pair (s, u) where s is the current location
and u is the set of unpurchased gifts on your list (so g € u indicates that gift ¢ has not yet been purchased).

(a) (1 pt) How large is the state space in terms of the quantities defined above?

M x 2. You are in one of M places (simple index from 1 to M), and have not purchased some subset of
N items (binary vector of size N).

(b) (4 pt) For each of the following heuristics, which apply to states (s,u), circle whether it is admissible,
consistent, neither, or both. Assume that the minimum of an empty set is zero.

The shortest time from the current location to any other store:
ming 4 t(s, s")

The time to get home from the current location:
t(S, 81)

The shortest time to get to any store selling any unpurchased gift:
minge, (ming.geq t(s,s"))

The shortest time to get home from any store selling any unpurchased gift:
minge, (ming.geq t(s', 51))

The total time to get each unpurchased gift individually:
2 geq (Minyges t(s, s'))

The number of unpurchased gifts times the shortest store-to-store time:
|ul (minsi,sﬂési t(5i7 8]))

Remember, a consistent heuristic doesn’t decrease from state to state by more than it actually costs to

get from state to state. And of course, a heuristic is admissible if it is consistent. If you’re confused,

remember: the problem defines the minimum of an empty set as 0.

([neither] / admissible / consistent / both)
(neither / admissible / consistent / [both])
(neither / admissible / consistent / [both])
(neither / [admissible] / consistent / both)
([neither] / admissible / consistent / both)

([neither] / admissible / consistent / both)

i. This heuristic does not return 0 in the goal state (s1, 0), since it gives the minimum distance to any
store other than the current one.

ii. We'll always need to get home from any state; the distance to home from home is 0; and this heuristic
does not decrease by more than it costs to get from state to state.

iii. We'll always need to get that last unpurchased item, and taking the min distance store guarantees
that we underestimate how much distance we actually have to travel. It is consistent because the
heuristic never diminishes by more than what is travelled.

iv. We'll always need to get home from getting the last unpurchased item, and taking the min underes-
timates the actual requirement. What makes this heuristic inconsistent is that when we visit the last
store to pick up the last unfinished item, the value of the heuristic goes to 0. Let’s say the graph looks
like this: s3 -—-1--> s5 ——--5----> s, with sy containing the last item. From s3, the heuristic is
5, but from so, the heuristic is now 0, meaning that traveling from s3 to ss decreases the heuristic by
5 but the actual cost is only 1.

v. This can overestimate the actual amount of work required.

vi. Same.

You have waited until very late to do your shopping, so you decide to send an swarm of R robot minions to
shop in parallel. Each robot moves at the same speed, so the same store-to-store times apply. The problem
is now to have all robots start at home, end at home, and for each item to have been bought by at least one
robot (you don’t have to worry about whether duplicates get bought). Hint: consider that robots may not all
arrive at stores in sync.

(c) (4 pt) Give a minimal state space for this search problem (be formal and precise!)

We need the location of each robot at each time. At a given time, a robot can either be at one of
M stores, or in any of (T — 1)M transition locations, where T' is the maximum travel distance between
two stores. Thus, the location of each robot takes (MT)f. We also need the set of items purchased (2%).
Therefore, the size of each state is: (MT) x 2V,

One final task remains: you still must find your younger brother a stuffed Woozle, the hot new children’s toy.
Unfortunately, no store is guaranteed to stock one. Instead, each store s; has an initial probability p; of still
having a Woozle available. Moreover, that probability drops exponentially as other buyers scoop them up, so
after ¢ time has passed, s;’s probability has dropped to 8ip;. You cannot simply try a store repeatedly; once it
is out of stock, that store will stay out of stock. Worse, you only have a single robot that can handle this kind
of uncertainty! Phrase the problem as a single-agent MDP for planning a search policy for just this one gift
(no shopping lists). You receive a single reward of +1 upon successfully buying a Woozle, at which point the
MDP ends (don’t worry about getting home); all other rewards are zeros. You may assume a discount of 1.

(d) (38 pt) Give a minimal state space for this MDP (be formal and precise!)

Which stores have been checked: 2M

Whether Woozle has been bought: 2

Current time: 7.

We may also want to keep track of the current location (M), but since there is no reward for traveling,
we don’t have to model that aspect of the problem.

NAME: 7

3. (13 points) CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and
freedom, rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortuantely, Pacman cannot
measure the the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent
corridors and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense
a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The
measurements for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

Pacman models this problem using variables X; for each corridor ¢ and domains P, G, and E.

(a) (3 pt) State the binary and/or unary constraints for this CSP (either implicitly or explicitly).
From the breezes, we get the following constraints:
Binary Unary
)(111701‘)(2:]—)7 XQZEO]TX;g:E, X27ép
X3:]‘; or)(4:]‘], X4:]) or X5:])7 X{g#[)
XsZPOTX6:P7 X]:POI‘X(;:P, X_17éP
And there is another binary constraint: If adjacent(¢, j), then —(X; = EA X; = E).

(b) (4 pt) Cross out the values from the domains of the variables that will be deleted in enforcing arc

consistency. X, P
X5 G E
X3 G E
Xy G E
X5 P
Xs P G E

(¢) (1 pt) According to MRV, which variable or variables could the solver assign first?

X3 or X5 (tie breaking)

(d) (1 pt) Assume that Pacman knows that Xg = G. List all the solutions of this CSP or write none if no

solutions exist.

(P.E,G,E,P,G)

(P,G.E,G,P,G)

Don’t forget that exits cannot be adjacent to each other, and that it takes at least one exit to generate a
weak breeze.

The CSP described above has a circular structure with 6 variables. Now consider a CSP forming a circular
structure that has n variables (n > 2), as shown below. Also assume that the domain of each variable has
cardinality d.

(e)

(f)

(2 pt) Explain precisely how to solve this general class of circle-structured CSPs efficiently (i.e. in time
linear in the number of variables), using methods covered in class. Your answer should be at most two
sentences.

We fix X; for some j and assign it a value from its domain (i.e. use cutset conditioning on one variable).
The rest of the CSP now forms a tree structure, which can be efficiently solved without backtracking by
one backward arc-enforcing and one forward value-setting pass. We try all possible values for our selected
variable X; until we find a solution.

(2 pt) If standard backtracking search were run on a circle-structured graph, enforcing arc consistency
at every step, what, if anything, can be said about the worst-case backtracking behavior (e.g. number of
times the search could backtrack)?

A tree structured CSP can be solved without any backtracking. Thus, the above circle-structured CSP
can be solved after backtracking at most d times, since we might have to try up to d values for X; before
finding a solution.

(o 188 Introduction to Midterm Exam
Spring 2011 A;tiﬁcialtlnteﬁligence Soluteions)

QL. [11 pts] Foodie Pacman

There are two kinds of food pellets, each with a different color (red and blue). Pacman is only interested in tasting
the two different kinds of food: the game ends when he has eaten 1 red pellet and 1 blue pellet (though Pacman may
eat more than one of each pellet). Pacman has four actions: moving up, down, left, or right, and does not have a
“stay” action. There are K red pellets and K blue pellets, and the dimensions of the board are N by M.

® ©6

[4(E
®

® ®

K=3 N=4, M=4

(a) [1 pt] Give an efficient state space formulation of this problem. Specify the domain of each variable in your
state space.

We need two variables to describe the location of pacman, one boolen variable showing whether pacmac already ate
a red pellet, and another boolean variable for the blue pellets. Formally:

(x €[1:N],y €[1: M],eateng € {T, F}, eatenp € {T,F'})
(b) [2 pts] Give a tight upper bound on the size of the state space.

There are at most N x M possible locations for pacman and 4 possible assignments to the boolean variables so the
size of the state space is upper bounded by 4 x N x M

(c) [2 pts] Give a tight upper bound on the branching factor of the search problem.

Each state has at most four distinct successors corresponding to the four possible actions. The branching factor is
at most 4.

(d) [1 pt] Assuming Pacman starts the game in position (x,y), what is the initial state?

(z,y, F, F'). The two boolean state variables are both false.

(e) [1 pt] Define a goal test for the problem.

(eatenp == T)&& (eatenp == T)

(f) [4 pts] For each of the following heuristics, indicate (yes/no) whether or not it is admissible (a correct answer
is worth 1 point, leaving it blank is worth 0 points, and an incorrect answer is worth -1 points).

Q4. |8 pts| Search

(a) [4 pts] The following implementation of graph search may be incorrect. Circle all the problems with the code.

function GRAPH-SEARCH(problem, fringe)
closed < an empty set,
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop
if fringe is empty then
return failure
end if
node < REMOVE-FRONT(fringe)
if GOAL-TEST(problem,STATE[node]) then
return node
end if
ADD STATE[node]| TO closed
fringe < INSERTALL(EXPAND(node, problem), fringe)
end loop
end function

1. ‘ Nodes may be expanded twice.

2. ‘ The algorithm is no longer complete.

3. The algorithm could return an incorrect solution.
4. None of the above.

The stated algorithm is equivalent to tree search. In graph search, nodes added to the “closed” list should not
be expanded again. Since this algorithm does not do that, it can get stuck in a loop and that is why it is not
complete.

(b) [4 pts] The following implementation of A* graph search may be incorrect. You may assume that the algorithm
is being run with a consistent heuristic. Circle all the problems with the code.

function A*-SEARCH(problem, fringe)
closed + an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop
if fringe is empty then
return failure
end if
node < REMOVE-FRONT(fringe)
if STATE[node] 1S NOT IN closed then
ADD STATE[node] TO closed
for successor IN GETSUCCESSORS(problem, STATE[node]) do
fringe + INSERT(MAKE-NODE(successor), fringe)
if GOAL-TEST(problem,successor) then
return successor
end if
end for
end if
end loop
end function

1. Nodes may be expanded twice.

2. The algorithm is no longer complete.

3. | The algorithm could return an incorrect solution.

4. None of the above.
The stated algorithm expands fewer nodes to find a goal, but it does not always find the optimal goal in terms
of cost. Note that “incorrect” means that it “not optimal” here.

Q6. |13 pts| Crossword Puzzles as CSPs

You are developing a program to automatically solve crossword puzzles, because you think a good income source for
you might be to submit them to the New York Times ($200 for a weekday puzzle, $1000 for a Sunday).! For those
unfamiliar with crossword puzzles, a crossword puzzle is a game in which one is given a grid of squares that must be
filled in with intersecting words going from left to right and top to bottom. There are a given set of starting positions
for words (in the grid below, the positions 1,2, 3,4, and 5), where words must be placed going across (left to right)
or down (top to bottom). At any position where words intersect, the letters in the intersecting words must match.
Further, no two words in the puzzle can be identical. An example is the grid below, in which the down words (1, 2,
and 3) are DEN, ARE, and MAT, while the across words (1, 4, and 5) are DAM, ERA, and NET.

Example Crossword Grid and Solution

Ip |24 [3M
“E[R | A
SN|E|T

A part of your plan to make crosswords, you decide you will create a program that uses the CSP solving techniques
you have learned in CS 188, since you want to make yourself obsolete at your own job from the get-go. Your first
task is to choose the representation of your problem. You start with a dictionary of all the words you could put in
the crossword puzzle, where the dictionary is of size K and consists of the words {dy,ds,...,dx}. Assume that you
are given a grid with N empty squares and M different entries for words (and there are 26 letters in the English
language). In the example above, N = 9 and M = 6 (three words across and three words down).

You initially decide to use words as the variables in your CSP. Let D; denote the first down word, Dy the second,
Dj3 the third, etc., and similarly let A; denote the kth across word. For example, in the crossword above, A; = DAM,
Dy =DEN, Dy = ARE, and so on. Let D[i] denote the letter in the ith position of the word D.

(a) [1 pt] What is the size of the state space for this CSP?

Several answers are acceptable for this problem. The simplest is that the dictionary has size K and there are M
words, giving state space size K™ . A slightly tighter bound is achieved by noting that once one word is placed, the

next words must all be different, giving K(K —1)(K —2)--- (K —M+1) = (ALI‘U), Noticing that we are choosing

M distinct words out of a possible K gives the state space bound (ﬁ)

Several students tried to include NV in their answers; since the letters have nothing to do with this formulation of the
problem, this was incorrect. Many students also incorrectly had MX.

(b) [3 pts] Precisely (i.e. use mathematical notation to) describe the constraints of the CSP when we use words as
variables.

For every pair of across and down words Dj, and A; that intersect, we have the constraint that their letters are equal.
Specifically, if they intersect in positions i and j, we have Dy[i] = A;[j].

We also have the pairwise constraints that none of the words are the same: for k # &/, Dy # Dy and Ay # A/, and
for all k, k', we have Ay, # Dy..

In addition, each word must have the correct length. One possible formulation is that for all L € N, for all words Dy,
and A; with length L in the puzzle, we have length(Dy) = L and length(A4;) = L.

The biggest problem that students had was assuming that all crossword puzzles were contiguous squares (or rectan-
gles) like the example. While that works for the above example, it will not work generally. Several students missed
one or two of the above constraints, and all three were necessary for full credit. Minor mistakes included missing a
few of the inequality constraints.

Thttp://www.nytimes.com/2009/07/19/business/media/19askthetimes.html

After defining your CSP, you decide to go ahead and make a small crossword using the grid below. Assume that you
use the words on the right as your dictionary.

Crossword Grid Dictionary Words
713 |4

ARCS, BLAM, BEAR, BLOGS, LARD, LARP,
GAME, GAMUT, GRAMS, GPS, MDS, ORCS, WARBLER

=N o o -

(c) [1 pt] Enforce all unary constraints by crossing out values in the table below.

D; | ARCS | BLAM | BEAR | BEOGS | LARD | LARP | GRS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
Doy | ARCS | BLAM | BEAR | BLBGS | LARD | LARP | GRS | MBS | GAME | GAMUT | GRAMS | ORCS | WARBLER
D3 | ARCS | BLAM | BEAR | BEGGS | LARD | LARP | GPS | MBS | GAME | GAMUT | GRAMS | ORCS | WARBLER
D, | ARCS | BLAM | BEAR | BEOGS | EARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
Ay | ARES | BEAM | BEAR | BLOGS | LARD | LARP | GPS | MBS | GAME | GAMUT | GRAMS | BRCS | WARBLER
As | ARCS | BLAM | BEAR | BEBGS | LARD | LARP | GPS | MBS | GAME | GAMUT | GRAMS | ORCS | WARBLER
Ag | ARCS | BLAM | BEAR | BEBGS | LARD | LARP | GPS | MBS | GAME | GAMUT | GRAMS | ORCS | WARBLER
A7 | ARES | BEAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | BRES | WARBLER

Here’s an extra table in case you make a mistake:

D; | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
Dy | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
D3 | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
D, | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
Aj | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
As | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
Ag | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
A7 | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER

(d) [1 pt] Assume that in backtracking search, we assign A; to be GRAMS. Enforce unary constraints, and in addition,
cross out all the values eliminated by forward checking against A; as a result of this assignment.

D, | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GRS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER

Here’s an extra table in case you make a mistake:

D; | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
Dy | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
D3 | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
Dy | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
A; | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
As | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
Ag | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER
A7 | ARCS | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MDS | GAME | GAMUT | GRAMS | ORCS | WARBLER

10

(e) [3 pts] Now let’s consider how much arc consistency can prune the domains for this problem, even when no
assignments have been made yet. Ie., assume no variables have been assigned yet, enforce unary constraints
first, and then enforce arc consistency by crossing out values in the table below.

D1 | ARES | BLAM | BEAR | BLOGS | LARD | LARP | GPS | MBS | GAME | GAMUT | GRAMS | ORES | WARBLER

The common mistake in this question was to leave a few blocks of words that students thought could not be eliminated.
Probably the most common was to allow both LARD and LARP for Dy and As. This is incorrect; for Ds, no assignment
of A7 is consistent with LARP, and for As;, no assignment of D, is consistent with LARD.

(f) [1 pt] How many solutions to the crossword puzzle are there? Fill them (or the single solution if there is only
one) in below.

B 2L [30 [*G | s
SLla|rR]|P
SalR|Cc s
™M|D]|S

=N oy o
N Oy o

There is one solution (above)

Your friend suggests using letters as variables instead of words, thinking that sabotaging you will be funny. Starting
from the top-left corner and going left-to-right then top-to-bottom, let X; be the first letter, X5 be the second, X3
the third, etc. In the very first example, X; =D, X5 = A, and so on.

(g) [1 pt] What is the size of the state space for this formulation of the CSP?
26N . There are 26 letters and NN possible positions.

(h) [2 pts] Assume that in your implementation of backtracking search, you use the least constraining value heuristic.
Assume that X7 is the first variable you choose to instantiate. For the crossword puzzle used in parts (c)-(f),
what letter(s) might your search assign to X;?

We realized that this question was too vague to be answered correctly, so we gave everyone 2 points for the problem.
The least constraining value heuristic, once a variable has been chosen, assigns the value that according to some
metric (chosen by the implementer of the heuristic) leaves the domains of the remaining variables most open. How
one eliminates values from the domains of other variables upon an assignment can impact the choice of the value as
well (whether one uses arc consistency or forward checking).

We now sketch a solution to the problem assuming we use forward checking. Let X7, X5,..., X5 be the letters in
the top row of the crossword and X, X¢, X7, Xg be the first column down. Upon assigning X; = G, the possible
domains for the remaining letters are

Xy € {A,R},Xg S {M,A},X/l € {U,M},X5 S {T,S},XG € {A},X7 € {M},Xg € {E}
Upon assigning X; = B, the possible domains remaining are
X2 S {L}5X3 € {D}7X4 S {G}aXf) S {S}vXG S {L',E}-,X7 S {A}7X8 € {Mv R}'

The remaining variables are unaffected since we are using only forward checking. Now, we see that with the assignment
X, = G, the minimum size remaining for any domain is 1, while the sum of the sizes remaining domains is 11; for
X, = B, the minimum size is 1, while the sum of the sizes remaining is 9. So depending on whether we use minimum
domain or the sum of the sizes of the remaining domains, the correct solutions are G and B or only G, respectively.

Any choice but X7 = B or X7 = G will eliminate all values for one of the other variables after forward checking.

11

